::p_load(tidyverse, jsonlite, SmartEDA, tidygraph, ggraph) pacman
In-class_Ex03
In the code chunk below, p_load() of pacman package is used to load the R packages into R environment.
Importing knowledge Graph Data
<- fromJSON("MC1_release/MC1_graph.json") kg
Inspect structure
str(kg, max.level = 1)
List of 5
$ directed : logi TRUE
$ multigraph: logi TRUE
$ graph :List of 2
$ nodes :'data.frame': 17412 obs. of 10 variables:
$ links :'data.frame': 37857 obs. of 4 variables:
Extract and inspect
<- as_tibble(kg$nodes)
nodes_tbl <- as_tibble(kg$links) edges_tbl
Initial EDA
ggplot(data = edges_tbl,
aes(y= `Edge Type`)) +
geom_bar()
Creating Knowledge Graph
This is
Step 1: Mapping from node id to row index
<- tibble(id= nodes_tbl$id,
id_map index = seq_len(
nrow(nodes_tbl)))
This ensures correct id from your node list is mapped to the correct row number.
Step 2: Map source and target IDs to row indices
<- edges_tbl %>%
edges_tbl left_join(id_map, by = c("source" = "id")) %>%
rename(from = index) %>%
left_join(id_map, by = c("target" = "id")) %>%
rename(to = index)
Step 3: Filter out any unmatched
(invalid) edges
<- edges_tbl %>%
edges_tbl filter(!is.na(from), !is.na(to))
Step 4: Creating the graph
Lastly, tbl_graph()
is used to create tidygraph’s graph pbject by using the code chunk below.
<- tbl_graph(nodes = nodes_tbl,
graph edges = edges_tbl,
directed = kg$directed)
Visualizing the knowledge graph
set.seed(1234)
Visualising the whole graph
ggraph(graph, layout = "fr") +
geom_edge_link(alpha = 0.3,
colour = "gray") +
geom_node_point(aes(color = `Node Type`),
size = 4) +
geom_node_text(aes(label = name),
repel = TRUE,
size = 2.5) +
theme_void()
Visualising the sub-graph
In this section, we are interested to create a sub-graph based on MemberOf
value in Edge_Type
column of the edges
column of the edge
data frame.
Step 1: Filter edges to only “MemberOf”
<- graph %>%
graph_memberof activate(edges) %>%
filter(`Edge Type` == "MemberOf")
Step 2: Extract only connected nodes (i.e., used in these edges)
<- graph_memberof %>%
used_node_indices activate(edges) %>%
as_tibble() %>%
select(from, to) %>%
unlist() %>%
unique()
Step 3: Keep only those nodes
<- graph_memberof %>%
graph_memberof activate(nodes) %>%
mutate(row_id = row_number()) %>%
filter(row_id %in% used_node_indices) %>%
select(-row_id) #optional cleanup
Plot the sub-graph
ggraph(graph_memberof,
layout = "fr") +
geom_edge_link(alpha = 0.5,
colour = "gray") +
geom_node_point(aes(color = `Node Type`),
size = 1) +
geom_node_text(aes(label = name),
repel = TRUE,
size = 2.5) +
theme_void()