pacman::p_load(tidyverse, jsonlite, SmartEDA, tidygraph, ggraph)In-class_Ex03
In the code chunk below, p_load() of pacman package is used to load the R packages into R environment.
Importing knowledge Graph Data
kg <- fromJSON("MC1_release/MC1_graph.json")Inspect structure
str(kg, max.level = 1)List of 5
$ directed : logi TRUE
$ multigraph: logi TRUE
$ graph :List of 2
$ nodes :'data.frame': 17412 obs. of 10 variables:
$ links :'data.frame': 37857 obs. of 4 variables:
Extract and inspect
nodes_tbl <- as_tibble(kg$nodes)
edges_tbl <- as_tibble(kg$links)Initial EDA
ggplot(data = edges_tbl,
aes(y= `Edge Type`)) +
geom_bar()
Creating Knowledge Graph
This is
Step 1: Mapping from node id to row index
id_map <- tibble(id= nodes_tbl$id,
index = seq_len(
nrow(nodes_tbl)))This ensures correct id from your node list is mapped to the correct row number.
Step 2: Map source and target IDs to row indices
edges_tbl <- edges_tbl %>%
left_join(id_map, by = c("source" = "id")) %>%
rename(from = index) %>%
left_join(id_map, by = c("target" = "id")) %>%
rename(to = index)Step 3: Filter out any unmatched
(invalid) edges
edges_tbl <- edges_tbl %>%
filter(!is.na(from), !is.na(to))Step 4: Creating the graph
Lastly, tbl_graph() is used to create tidygraph’s graph pbject by using the code chunk below.
graph <- tbl_graph(nodes = nodes_tbl,
edges = edges_tbl,
directed = kg$directed)Visualizing the knowledge graph
set.seed(1234)Visualising the whole graph
ggraph(graph, layout = "fr") +
geom_edge_link(alpha = 0.3,
colour = "gray") +
geom_node_point(aes(color = `Node Type`),
size = 4) +
geom_node_text(aes(label = name),
repel = TRUE,
size = 2.5) +
theme_void()Visualising the sub-graph
In this section, we are interested to create a sub-graph based on MemberOf value in Edge_Type column of the edges column of the edge data frame.
Step 1: Filter edges to only “MemberOf”
graph_memberof <- graph %>%
activate(edges) %>%
filter(`Edge Type` == "MemberOf")Step 2: Extract only connected nodes (i.e., used in these edges)
used_node_indices <- graph_memberof %>%
activate(edges) %>%
as_tibble() %>%
select(from, to) %>%
unlist() %>%
unique()Step 3: Keep only those nodes
graph_memberof <- graph_memberof %>%
activate(nodes) %>%
mutate(row_id = row_number()) %>%
filter(row_id %in% used_node_indices) %>%
select(-row_id) #optional cleanupPlot the sub-graph
ggraph(graph_memberof,
layout = "fr") +
geom_edge_link(alpha = 0.5,
colour = "gray") +
geom_node_point(aes(color = `Node Type`),
size = 1) +
geom_node_text(aes(label = name),
repel = TRUE,
size = 2.5) +
theme_void()